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Abstract The published isothermal density data of aqueous monoisopropanolamine
(MIPA) for different temperatures are converted into molar volumes as a function of
composition. Tikhonov regularization is applied to obtain the derivatives of molar vol-
ume with respect to composition. These derivatives are used to compute the two partial
molar volumes of the aqueous solution covering the entire composition range and for
all the temperatures reported. A second application of Tikhonov regularization is then
used to obtain the partial molar coefficients of the thermal expansion of the solution
under constant pressure. This is followed by an examination of the second derivative
of the partial molar volumes with respect to temperature over the entire composition
range. The signs of these derivatives, for different compositions and temperatures,
allow the change in the molecular interaction between MIPA and water in aqueous
solution to be discussed.
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1 Introduction

Aqueous monoisopropanolamine (MIPA) is one of the several alkanolamine solutions
used in the absorption of carbon dioxide, sulfur dioxide, and hydrogen sulfide gases
in the process industry. As an absorption agent, MIPA is less widely used than, for
example, monoethanolamine or diethanolamine, but it is said to have the advantage of
a higher reaction rate with some of these gases when compared to the more common
alkanolamines [1]. A quick examination of the patent literature reveals that MIPA is
the starting material in many laboratory and industrial organic synthesis processes. It
is also an important constituent, serving variously as a stabilizer, emulsifier, and pH
control agent, in the formulation of a large number of industrial, household, pharma-
ceutical, and cosmetic products. Apart from their practical importance, the thermo-
dynamic and transport properties of the MIPA—water system are also of fundamental
interest to physical chemists and consequently these have been reported by a number
of investigators [2—6].

The aim of this research is to apply the recently reported Tikhonov regularization
technique [7,8] in order to convert the density data of aqueous MIPA reported by
Mokraoui et al. [4] into partial molar volumes Vmipa and Vw of MIPA and water,
respectively. This new technique allows the partial molar volumes to be obtained more
easily and more reliably. The data in [4] include not only the density at closely spaced
compositions, but also the density at a series of regularly spaced temperatures 7.
Through a second application of Tikhonov regularization, the non-isothermal partial
molar volumes at fixed compositions are converted into isobaric coefficients of ther-
mal expansion of aqueous MIPA over the entire composition range and for the range of
temperatures reported in [4]. Variations of the partial molar volumes with temperature
and composition are then examined with the objective of detecting the change, if any,
in the interaction between MIPA and water molecules in the aqueous solution.

2 Molar Volume Data and Numerical Method

Mokraoui et al. [4] measured the mass density p(xw) of aqueous MIPA solutions, at
atmospheric pressure, for 283.15K < 7' < 353.15K [4]. For each T, they tabulated
the density at 21 different mole fractions of water between the range of 0.0438 <
xw < 0.9600. These data are converted into molar volume by using the following
simple expression,

M 1 — M,
o) = xw My +/§(XW;€W) MIPA, o

where Myipa and Mw are the molar masses of MIPA and water, respectively. As
v(xw) can be computed directly from the tabulated p (xw) data in [4], they will not be
presented here. For each temperature, the resulting v(xw) data are extended to include
that of pure MIPA and pure water. The densities of the pure components at different
temperatures are taken from [4] for MIPA and [9] for water.

The partial molar volumes Vuipa and Vyy are related to v(xw) by [10]
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_ v — av
VMiPA =V —xw—, Vw =v+xmipa—— (2)
oxw oxw

with the understanding that the temperature and pressure are held fixed in these partial
derivatives. For simplicity, subscripts normally used to indicate the thermodynamic
variables that are being held fixed have been omitted here and in most of the subsequent
derivatives. The critical step in applying Eq. 2 to obtain the partial molar volumes is
the differentiation of the experimental v(xw) data. If this is not carefully performed,
the differentiation operation will amplify the measurement noise in v(xw), leading to
a noisy derivative and consequently unreliable partial molar volumes [7]. The usual
practice is to fit low-order polynomials to the experimental data and compute the
required derivatives by differentiating the fitted curves. It is well known that two dif-
ferent fitted curves that describe the same set of v(xw) data to the same degree of
accuracy do not necessarily have derivatives that are in agreement with one another.
This is because differentiation is likely to amplify the local and usually minor dif-
ferences between two nearly identical fitted curves [7]. The Tikhonov regularization
procedure used to compute the partial derivative dv/dxw in this research has a built-in
regularization parameter A thatis able to keep the noise amplification under control [7].
The mathematical principles of the Tikhonov regularization procedure can be found
in [7,8]. Some of its advantages over existing curve fitting methods, when applied to
evaluate isothermal partial molar volumes of a number of different binary solutions,
are discussed in [8, 11, 12]. Apart from the short description in the following paragraph
to introduce the key equations of Tikhonov regularization, detailed development of
this procedure and its implementation on computers will be omitted. Interested readers
are directed particularly to [8].

For the purpose of introducing Tikhonov regularization, it is convenient to denote
the first and second derivatives of v(xw) by r (xw) = dv/dxw and f (xw) = 9%v/ 8xvzv.
In terms of these derivatives, v(xw) is given by [13]

xw
VClaw) = / (rw — ) f(endx’ + vo + xwro. 3)

x'=0

Superscript C is used to distinguish the computed molar volume from its experimen-
tally measured counterpart, which will be denoted by vM(xw). Equation3 is exact
and is based on a two-term Taylor’s series expansion of v(xw) about xw = 0. The
integral on the right-hand side of Eq. 3 is the remainder term of the Taylor’s series in
integral form [13]. Tikhonov regularization solves this equation for the unknown sec-
ond derivative f(xw) together with the unknown constants » (0) = ro and v(0) = v,
i.e., the value of the first derivative and that of the molar volume of pure water. This is
achieved by finding the discretized f (xw) and the constants rg and vg that minimize
the sum of the squares of the differences between the experimental data v (xw) and
the back-calculated vC(xw). In processing the v(xw) data sets from [4], the choice
of the regularization parameter A is guided by general cross validation (GCV) [14].
An appropriate A will ensure that the resulting f(xw) does not show excessive and
physically unreal fluctuations.
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3 Results and Discussion
3.1 Partial Molar Volumes

For each set of the v (xw) data, the discretized f (xw) given by Tikhonov regularization
is integrated to yield the first derivative r (xw) needed in Eq. 2. For checking purposes,
this first derivative is further integrated to give the back-calculated specific volume
v®(xw), and this is compared against the corresponding experimental specific volume
data vM(xyw). Since numerical integration is a well-behaved operation that does not
amplify noise, these two integration steps were carried out using standard commercial
software. For all the cases investigated, the average difference between v™ (xw) and
vC(xw) is less than a tiny fraction of 1%, thereby confirming the reliability of the
derivatives generated by Tikhonov regularization.

The partial molar volumes Vw and that of Vpa obtained by substituting r (xw) =
dv/dxw and vC(xw) into Eq.2 are tabulated in Table 1. They cover the entire com-
position range 0 < xw < 1 and all the temperatures investigated by Mokraoui et
al. [4]. These partial molar volumes have been compared against that obtained by
using the least-squares fitted parameters reported in [4], and they are found to be in
very satisfactory agreement. Compared to the least-squares procedure reported in [4],
the Tikhonov regularization procedure is computationally simpler even though the
mathematical analysis behind it may appear to be more complex.

To examine the overall behaviors of Vw and V ymipa generated by Tikhonov regu-
larization, they are shown graphically in Fig. 1a and b. In these plots, the temperature
varied from 7" = 283.15 K for the bottommost curve to 7 = 353.15 K for the topmost
curve. The temperatures for the in-between curves are as listed in Table 1. The most
prominent features of the partial molar volume curves are the large minima exhibited
by all the VMipa curves in the nei ghborhood of xw = 0.9 (Fig. 1a). As required by the
Gibbs-Duhem relationship between the partial molar volumes of binary solutions, at
each of these minima of the V ypa curves, the Vi curves exhibit a maximum. These
maxima are much smaller in size, and consequently some of them do not show up
clearly in the curves in Fig. 1b. However, they can be observed in enlarged localized
plots.

The partial molar volume plots in Fig. 1 show that, for any xw, both Vmipa and Vi
increase with 7. At some isolated xw, the partial molar volume curves can become
closely bunched up, but they do not appear to intersect one another. In particular,
both of the partial molar volumes at infinite dilution, i.e., Vmipa at xw = 1 and Vi
at xy, = 0, increase with 7. These are in a satisfactory agreement with the recent
corrected partial molar volumes at infinite dilution reported by Mokraoui et al. [5].

3.2 Coefficients of Thermal Expansion
An important material property of solutions undergoing constant pressure heating is
the isobaric coefficient of thermal expansion defined by « = (1/v)dv/dT. For a

binary solution such as aqueous MIPA, starting from the expression v = xwVw +
(1 — xw) VMrpa, o can be expressed in terms of partial molar quantities,
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Fig. 1 Partial molar volumes of MIPA and water for temperatures between 283.15 K (bottommost curve)
and 353.15K (topmost) at 5K intervals: (a) MIPA and (b) water

190w Vi + (1 — xw) Vmpal
v oT

_ xwVw B Ww  A—xw)Vmea 1| 3Vmipa
v Vy T v Vmea 0T
= waw + PrIPATMIPA 4)
where
— (I —xw)Vmipa - xwVw
dMmpr = ————, dw = (5)
v v
and
_ 1 aVmipa 1 aVw ©)
o = = —_—, W= =
MIPA Vs 0T w Y 0T

Equation5 can be regarded as the definition of partial molar volume fractions and
Eq. 6 as the definition of partial molar coefficients of thermal expansion.

In evaluating the partial derivatives in Eq. 6, it is understood that both pressure P
and xw are held fixed. This is achieved by treating the computed V ypa and Vw in
Table 1 as functions of T with composition xyw held at a fixed value. Examples of
constant composition plots are shown in Fig.2a and b for Vmipa and Fig.2c for Vw.
For clarity, the constant composition data for Vypa are shown in two separate plots.
In order that the Vypa data for xw = 0, i.e., for pure MIPA, can be clearly observed,
these are shown in Fig.2b instead of Fig.2a. Based on the data available, there are
only 15 points on each of the constant composition curves and these points are at a
comparatively large temperature interval of 5 K. It is essential to allow for this paucity
of data when considering all the subsequent results.

@ Springer



456 Int J Thermophys (2009) 30:448-463

(a) R (b) ol
82| W4
- ad - 80f
5 + 17 3
L Y £ nf
5 S
£ 78F £
3 B 7af
76 7k
1 1 1 1 1 1 1 1 L 1
280 300 320 340 360 280 300 320 340 360
T.K T.K
(c)
gnt®
e :“‘

“mol ™!
oo
1
>
»>
[ 3
>
>
| 2
>
»
| 3 [ 3N
> .
> .
[ 3
>
>
[ 3

Vy.cm™

o
Ll
»>
>
>
>
>
>
>
>
>
>
> >
- >
-
-
s

TK
Fig. 2 Variation of partial molar volumes with temperature at constant composition. Discrete points
in (a) and (b) are for MIPA and those in (c) are for water. l: xyy = 0.1,0.3,0.5,0.7,0.9; A: xw =

0.2,0.4,0.6,0.8; ¢: xw = 0.0; and e: xyv = 1.0. Continuous curve in (a) istheback—calculated#lvﬂpA(T)
for xyv = 0.5; those in (b) are for xyy = 0.6 (upper curve) and 0.9 (lower curve). Continuous curves in (c)
are V%W(T) for xw = 0.1 (lower curve), 0.4 (middle curve), and 0.7 (upper curve)

Tikhonov regularization is now applied to evaluate the second derivatives 8>V yipa /
dT? and 3>V /3dT? of the constant xy data. The basic steps are the same as in the
evaluation of 3%v/ BX%V. Because of the smaller number of points in each of the constant
xw data sets, the regularization parameter A is now guided by the Morozov principle
instead of GCV [7]. As before, the second derivatives are integrated once to yield
AV MIPA /90T and BVW /0T and then integrated a second time to give the back-calcu-
lated VEAIPA(T) and V\C,V(T). The reliability of the derivatives with respect to T are,
again as before, checked by comparing the back-calculated partial molar volumes with

the discrete points in Fig. 2. Typical examples of the back-calculated VI(\:,HPA(T) and

Vw(T') are shown as continuous curves in Fig.2. In general, the average difference
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Fig. 3 Partial molar coefficients of thermal expansion as a function of temperature. Composition is indi-
cated by the figure next to each of the curves: (a), (b) MIPA and (c), (d) water

between the discrete points and the continuous VCW(T) and VEAIPA(T) curves is again
less than a small fraction of 1%.

The oemipa and aw obtained by substituting OV MIpA /0T and Vw /0T together
with VSHPA(T) and VSV(T) into Eq. 6 are tabulated in Tables2 and 3 and plotted in
Fig.3.

Figure 3a shows that, for 0 < xw < 0.5, all the orpypa curves are closely bunched
up. The accuracy of the numerical results is unable to resolve them reliably. But it is
clear that all these amipa increase slightly with increasing 7. Figure 3b shows that,
for xw > 0.6, the orpppa curves begin to spread out and increase significantly as xyw
becomes larger, attaining a maximum at xw = 0.9. Beyond that, the @ypa curve
drops significantly. This change in trend is clearly tied with extrema in the partial
molar volumes in the neighborhood of xw = 0.9. As shown in Fig. 3a, all the o'mipa
shown in Fig. 3b also increase with T except in the neighborhood of xw = 0.9, where
they decrease with 7.
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Figure 3c,d shows that the partial molar coefficient of the thermal expansion for
water exhibits a different trend. For 0 < xw < 0.6 (approx.), the oy curves move
toward higher and higher values as xw is increased. Beyond xw = 0.6, this increasing
trend is reversed and the aw curve attains a minimum at xw =~ 0.9. Finally, for
xw = 1.0, i.e., pure water, @w moved above that for xyy = 0.9 indicating the
re-emergence of the increasing trend. It is noticed that aw increases with T for all
xw, but the rate of increase is significantly non-uniform.

To ensure that the behaviors exhibited by the computed oepmipa and aw are not
numerical artifacts, a simple check has been carried out. By definition, when xw =
0, @pmpa = amrpa and when xw = 1, @w = aw, i.e., they become the normal coef-
ficients of thermal expansion of pure MIPA and water, respectively. Mokraoui et al.
[4] reported extensive density versus temperature data of pure MIPA. Based on these
data, anmpa can be calculated very reliably. These are shown as discrete points in
Fig.4. For comparison, the ayrpa curve for xw = 0 given by Tikhonov regulariza-
tion in Fig.3a is reproduced in Fig.4. There is essentially no noticeable difference
between the discrete points and the continuous curve. Kell [9] tabulated aw of pure
water over a wide range of temperatures, and these are also plotted as discrete points
in Fig.4. These are compared against the orw curve for xw = 1 taken from Fig. 3d.
Again there is no noticeable difference between the discrete points and the continuous
curve. As the two discrete sets of normal coefficients of thermal expansion for the pure
components were obtained in a completely independent manner of their counterparts
obtained through the partial molar volume data, the comparisons in Fig.4 confirm
not only the reliability of the oepmipa and aw of the pure components, but also that
of all the other amipa and aw curves obtained by the same Tikhonov regularization
computation.

3.3 Structure Enhancement/Destruction in Aqueous MIPA

Hepler [15] examined the second derivative of specific volume (821) /0 T2) p of solu-
tions and deduced from it whether changing the composition of a binary solution
is likely to be structure promoting or destroying. The basis for this is the standard
thermodynamic identity [10],

aCp 3%
— ) =-T|—) - 7
(5r),= 7 (7),
The understanding here is that, for a solution with significant structure, such as water,
Cp is expected to be large compared to one with less structure. Increasing pressure
P destroys the structure, i.e., (0Cp /0 P) is expected to be negative. If there is very
little structure in a solution, (dCp/d P)r is expected to be close to 0. If the structure
in the solution is increased, (0Cp/d P)r is expected to become more negative. On
the other hand, if the structure is reduced, (dCp/dP)7 is expected to become less
negative.
In order to apply these observations to aqueous MIPA, the thermodynamic identity

for (0Cp/0P)r is expressed in terms of the appropriate partial molar quantities,
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Fig. 4 Comparison of partial molar coefficients of thermal expansion with normal coefficients of thermal
expansion for pure components: 4: normal coefficient of pure MIPA [4] and e: normal coefficient of pure
water [9]. Curves are the partial molar coefficients from Fig.3a for MIPA with xy = 0 and from Fig.3d
for water with xyv = 1.0

P aT?2

?Vw 32V Mmipa
-T |:xw( 372 ) + XMIPA (W ®)
P,xw P, xmipA

According to Eq. 8, if xyrpa is increased slightly, a positive (82 Vmipa/077) , —

will make (0Cp /0 P); more negative suggesting that this is structure promoting. Con-
versely, a small increase in xypa when (32Vvipa /0772) P 1S NEGAtive Will make
(0Cp /03 P)7 less negative suggesting structure destruction. Similar deductions can be

made with regarding to changing xw and the sign of (02Vw/0T?), .
The second derivatives (9V mpa/97T?) Poxsion no
tion computation are shown in Fig. 5a and b, and the corresponding (82 Vw/o T2) Poxw

are shown in Fig. 5c. The (82VW /0 T2) Py CUIVes in Fig. 5¢ do not exhibit any clear
pattern as T'is increased. With the limited non-isothermal data available, it is doubtful
that a detailed analysis of their trend can be justified. But it is also clear from Fig. 5S¢
that all the (BZVW /0 T2) Py A€ essentially positive. Hence, water can be regarded

(ECP) _ 7 (az(xwvw + xMpA V MIPA) P vy )
T

given by the Tikhonov regulariza-

as structure promoting. Similarly, (3*Vypa/97T2) for0 < xw < 0.5inFig.5a

P, xmipA T
also shows no discernable trends, but they are all positive. The (32 Vmipa/0 T2) Poxuiibn
for 0.6 < xw < 1.0 in Fig. 5b are more regular, and they again remain positive except
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Fig. 5 The second derivatives of partial molar volumes with respect to temperature: (a), (b) MIPA and (c)
water. For curves that are spaced out, the value of xy is shown beside each of the curves

in the neighborhood of xw = 0.9. Thus, in general, MIPA also appears to be structure
promoting. Atxw = 0.9, (82VMIPA/8 Tz)P . is negative for T < 335K (approx.)
suggesting that the addition of MIPA to water under this condition is structure destroy-
ing. But this ceases to be so with further addition of MIPA. This changeover from
structure destroying to structure promoting occurs between xw = 0.9 and xw = 1.
However, without specific knowledge of the nature of the structure or structures in
aqueous MIPA solutions under different temperatures and concentrations, this brief
discussion of structure, promoting or destroying, should be treated as tentative or even
speculative.

Figure2 shows that all the Vmipa and Vi, at constant composition, are rela-

tively linear in 7. Consequently, the second derivatives (3%V ypa/077?) P, 304
(82VW /0 T2) Py A€ expected to be close to 0. According to Tikhonov regulariza-

tion, they are indeed very small, only of the order of 10~%cm? - mol~! - K72, As
the computation of Vypa and Vw requires the first derivative of the experimentally
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measured specific volume v(xw), their second derivatives with respect to T are there-
fore effectively the third derivative of v(xw)—once with respect to xw and twice with
respect to 7. Evaluation of the higher derivatives of experimental data poses consider-
able computational problems [7]. It is not surprising that Mokraoui et al. [4] reported
difficulties in obtaining (32 V vpa/07?) Poxses, 204 (9*°Vw/0T?) poxy - The second
derivatives in Fig.5 demonstrate the advantages of Tikhonov regularization over the
conventional curve fitting technique. The reliability of these second derivatives can
be further improved if the experimental p(xw) or v(xw) data are available over a
wider temperature range and possibly at a smaller temperature interval. The former is

physically attainable, but the latter may raise a number of practical issues.

4 Conclusion

Tikhonov regularization provides an efficient way of computing the various deriva-
tives of the molar volume data of aqueous MIPA. These derivatives allow the partial
molar volumes and the partial molar coefficients of thermal expansion to be evaluated
reliably. The change in the sign of the second derivatives of the partial molar vol-
umes with respect to temperature provides a means of investigating, albeit with some
uncertainty, the structure forming and destroying role of MIPA and water at different
temperatures and for different compositions.
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